Radical SAM-dependent carbon insertion into the nitrogenase M-cluster.
نویسندگان
چکیده
The active site of nitrogenase, the M-cluster, is a metal-sulfur cluster containing a carbide at its core. Using radiolabeling experiments, we show that this carbide originates from the methyl group of S-adenosylmethionine (SAM) and that it is inserted into the M-cluster by the assembly protein NifB. Our SAM cleavage and deuterium substitution analyses suggest a similarity between the mechanism of carbon insertion by NifB and the proposed mechanism of RNA methylation by the radical SAM enzymes RlmN and Cfr, which involves methyl transfer from one SAM equivalent, followed by hydrogen atom abstraction from the methyl group by a 5'-deoxyadenosyl radical generated from a second SAM equivalent. This work is an initial step toward unraveling the importance of the interstitial carbide and providing insights into the nitrogenase mechanism.
منابع مشابه
Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens.
Nitrogenase biosynthesis protein NifB catalyzes the radical S-adenosyl-L-methionine (SAM)-dependent insertion of carbide into the M cluster, the cofactor of the molybdenum nitrogenase from Azotobacter vinelandii. Here, we report the identification and characterization of two naturally "truncated" homologs of NifB from Methanosarcina acetivorans (NifB(Ma)) and Methanobacterium thermoautotrophicu...
متن کاملRefining the Pathway of Carbide Insertion into the Nitrogenase M-cluster
Carbide insertion plays a pivotal role in the biosynthesis of M-cluster, the cofactor of nitrogenase. Previously, we proposed a carbide insertion pathway involving methyltransfer from SAM to a FeS precursor and hydrogen abstraction from this methyl group that initiates the radical-based precursor maturation. Here we demonstrate that the methyl group is transferred to a precursor-associated sulf...
متن کاملCrystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme.
The crystal structure of biotin synthase from Escherichia coli in complex with S-adenosyl-L-methionine and dethiobiotin has been determined to 3.4 angstrom resolution. This structure addresses how "AdoMet radical" or "radical SAM" enzymes use Fe4S4 clusters and S-adenosyl-L-methionine to generate organic radicals. Biotin synthase catalyzes the radical-mediated insertion of sulfur into dethiobio...
متن کاملAdvanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM).
The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then pr...
متن کاملThe biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes.
Sulfur atoms are present as thiol and thioether functional groups in amino acids, coenzymes, cofactors, and various products of secondary metabolic pathways. The biosynthetic pathways for several sulfur-containing biomolecules require the substitution of sulfur for hydrogen at unreactive aliphatic or electron-rich aromatic carbon atoms. Examples discussed in this review include biotin, lipoic a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 337 6102 شماره
صفحات -
تاریخ انتشار 2012